
W
hite Paper

An Overview of the
Secure Shell (SSH)

4848 tramway ridge dr. ne
suite 101
albuquerque, nm 87111

505 - 332 -5700

www.vandyke.com



Secure Shell Overview 

Overview of Secure Shell ................................................................................................... 2 
Introduction to Secure Shell............................................................................................ 2 
History of Secure Shell ................................................................................................... 2 
Functionality of Secure Shell.......................................................................................... 3 

Secure Command Shell............................................................................................... 3 
Port forwarding ........................................................................................................... 3 
Secure File Transfer.................................................................................................... 4 

Protocol Basics of Secure Shell ...................................................................................... 5 
User Authentication .................................................................................................... 5 
Host Authentication .................................................................................................... 7 
Data Encryption .......................................................................................................... 8 
Data Integrity .............................................................................................................. 8 
Other Benefits ............................................................................................................. 8 

Secure Shell Software Solutions..................................................................................... 9 
VShell® Server ............................................................................................................ 9 
SecureCRT®................................................................................................................ 9 
SecureFX® .................................................................................................................. 9 

Secure Shell – an Open Standard.................................................................................. 10 
Threats Addressed by Secure Shell............................................................................... 10 

Eavesdropping or Password Sniffing........................................................................ 10 
Man-in-the-Middle Attack (MITM) ......................................................................... 10 
Insertion and Replay Attacks .................................................................................... 11 

Need for Policy with Secure Shell ................................................................................ 12 
 

Secure Shell Overview Page 1 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

Overview of Secure Shell 
 

Secure Shell (SSH) provides an open protocol for securing network communications that is 
less complex and expensive than hardware-based VPN solutions. Secure Shell client/server 
solutions provide command shell, file transfer, and data tunneling services for TCP/IP 
applications. SSH connections provide highly secure authentication, encryption, and data 
integrity to combat password theft and other security threats. VanDyke Software® clients 
and servers are mature native Windows implementations that offer a range of SSH 
capabilities and are interoperable with SSH software on other platforms. 
 

Introduction to Secure Shell 
As Internet access becomes increasingly inexpensive and available, it has become a 
viable replacement for traditional couriers, telephone, and fax, as well as remote dial-up 
access to a company’s internal computer resources. 
 
One of the biggest challenges in using the Internet to replace more traditional 
communications is security. In the past, companies have maintained their own modem 
bank dial-up access to company resources so that critical data wasn’t being transmitted 
over the public network. Modem banks are expensive to maintain and don’t scale well. In 
a large company, long distance charges for road warriors alone can make this an 
expensive solution. 
 
Secure Shell is a protocol that provides authentication, encryption and data integrity to 
secure network communications. Implementations of Secure Shell offer the following 
capabilities: a secure command-shell, secure file transfer, and remote access to a variety 
of TCP/IP applications via a secure tunnel. Secure Shell client and server applications are 
widely available for most popular operating systems. 
 
Secure Shell offers a good solution for the problem of securing data sent over a public 
network. For example, using Secure Shell and the Internet for securely transferring 
documents and work products electronically, rather than using a traditional overnight 
courier can provide a substantial cost savings. Consider that the average shipping rate for 
a single overnight package is between $15 and $30. The average one month unlimited 
Internet access account in the U.S. costs about $14 a month and usually offers nationwide 
dial-up access. Using the Internet with Secure Shell to securely deliver your documents, 
you could easily recoup the cost of Internet access with just one document transfer. 
 

History of Secure Shell 
Secure Shell has seen steady improvement and increased adoption since 1995. The first 
version of Secure Shell (SSH1) was designed to replace the non-secure UNIX “r-
commands” (rlogin, rsh, and rcp). Secure Shell version 2 (SSH2), submitted as an 
Internet Engineering Task Force (IETF) draft in 1997, addresses some of the more 
serious vulnerabilities in SSH1 and also provides an improved file transfer solution.  
 

Secure Shell Overview Page 2 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

This increasing popularity has been fueled by the broader availability of commercially 
developed and supported client and server applications for Windows, UNIX and other 
platforms, and by the efforts of the OpenSSH project to develop an open source 
implementation. 
 

Functionality of Secure Shell 
Secure Shell provides three main capabilities, which open the door for many creative 
secure solutions.  
- Secure command-shell 
- Secure file transfer 
- Port forwarding 
 

Secure Command Shell 
Command shells such as those available in Linux, Unix, Windows, or the familiar DOS 
prompt provide the ability to execute programs and other commands, usually with 
character output. A secure command-shell or remote logon allows you to edit files, view 
the contents of directories and access custom database applications. Systems and network 
administrators can remotely start batch jobs, start, view or stop services and processes, 
create user accounts, change permissions to files and directories and more. Anything that 
can be accomplished at a machine’s command prompt can now be done securely from the 
road or home. 
 

 
 

Execute remote commands with the Secure Shell  

Port forwarding   
Port forwarding is a powerful tool that can provide security to TCP/IP applications 
including e-mail, sales and customer contact databases, and in-house applications. Port 
forwarding, sometimes referred to as tunneling, allows data from normally unsecured 
TCP/IP applications to be secured. After port forwarding has been set up, Secure Shell 
reroutes traffic from a program (usually a client) and sends it across the encrypted tunnel, 
then delivers it to a program on the other side (usually a server).. Multiple applications 
can transmit data over a single multiplexed channel, eliminating the need to open 
additional vulnerable ports on a firewall or router. 

Secure Shell Overview Page 3 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

 
For some applications, a secure remote command shell isn’t sufficient and graphical 
remote control is necessary. Secure Shell’s port forwarding capabilities can be used to 
create an encrypted tunnel over which an application can be run. Virtual Network Client 
(VNC this will be a link to: http://www.uk.research.att.com/vnc/index.html), a cross 
platform GUI remote control application is a good example. 
 

Internet

Host with:
SSH server
Mail server

Database server
VNC server

SSH Client
port forwarding:

E-mail
Database

VNC client

Firewall with
only port 22

open

Secure encrypted tunnel

 
 

Port forwarding allows multiple TCP/IP applications to share a single secure connection 

Secure File Transfer 
Secure File Transfer Protocol (SFTP) is a subsystem of the Secure Shell protocol. In 
essence, it is a separate protocol layered over the Secure Shell protocol to handle file 
transfers. SFTP has several advantages over non-secure FTP. First, SFTP encrypts both 
the username/password and the data being transferred. Second, it uses the same port as 
the Secure Shell server, eliminating the need to open another port on the firewall or 
router. Using SFTP also avoids the network address translation (NAT) issues that can 
often be a problem with regular FTP. One valuable use of SFTP is to create a secure 
extranet or fortify a server or servers outside the firewall accessible by remote personnel 
and/or partners (sometimes referred to as a DMZ or secure extranet). 
 
Using SFTP to create a secure extranet for sharing files and documents with customers 
and partners balances the need for access with security requirements. Typical uses of a 
secure extranet include uploading of files and reports, making an archive of data files 
available for download and providing a secure mechanism for remote administration file-
oriented tasks. Extranets with business partners have proven to be much more effective 
for companies than more traditional methods of communication like phone or fax. In fact, 
SFTP can automate many of these transactions so they take place without human 
intervention. 

Secure Shell Overview Page 4 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

A secure extranet is one of the safest ways to make specific data available to customers, 
partners and remote employees without exposing other critical company information to 
the public network. Using SFTP on your extranet machines effectively restricts access to 
authorized users and encrypts usernames, passwords and files sent to or from the DMZ. 
 

InternetPartner 1
SSH Client

Partner 2
SSH Client

DMZ

SSH2 Server
for SFTP

Corporate
network

accessing
DMZ

through
firewall

Firewall

 
A secure extranet (DMZ) allows secure SFTP access to information assets by partners and internal users 

 
 

Protocol Basics of Secure Shell 
The Secure Shell protocol provides four basic security benefits: 
- User Authentication 
- Host Authentication 
- Data Encryption 
- Data Integrity 
 

 
 

Secure Shell authentication, encryption and integrity ensure identities and keep data secure 

User Authentication  
Authentication, also referred to as user identity, is the means by which a system verifies 
that access is only given to intended users and denied to anyone else. Many 
authentication methods are currently used, ranging from familiar typed passwords to 
more robust security mechanisms. Most Secure Shell implementations include password 

Secure Shell Overview Page 5 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

and public key authentication methods but others (e.g. kerberos, NTLM, and keyboard-
interactive) are also available. The Secure Shell protocol’s flexibility allows new 
authentication methods to be incorporated into the system as they become available. 
 

Password Authentication 
Passwords, in combination with a username, are a popular way to tell another computer 
that you are who you claim to be. If the username and password given at authentication 
match the username and password stored on a remote system, you are authenticated and 
allowed access. Some protocols like FTP and Telnet send usernames and passwords as 
easily visible ASCII text “in the clear”, allowing anyone with a sniffer program to easily 
capture them and then gain access to the system (see Eavesdropping for more details). 
Secure Shell safeguards against this attack by encrypting all data, including usernames 
and passwords, before transmission. 
Although passwords are convenient, requiring no additional configuration or setup for 
your users, they are inherently vulnerable in that they can be guessed, and anyone who 
can guess your password can get into your system (see the Need for policy section for 
more details). Due to these vulnerabilities, it is recommended that you combine or 
replace password authentication with another method like public key. 
 

Public Key Authentication 
Public key authentication is one of the most secure methods to authenticate using Secure 
Shell. Public key authentication uses a pair of computer generated keys – one public and 
one private. Each key is usually between 1024 and 2048 bits in length, and appears like 
the sample below. Even though you can see it, it is useless unless you have the 
corresponding private key: 
 
---- BEGIN SSH2 PUBLIC KEY ---- 
Subject: 
Comment: my public key 
AAAAB3NzaC1kc3MAAACBAKoxPsYlv8Nu+fncH2ouLiqkuUNGIJo8iZaHdpDABAvCvLZn 
jFPUN+SGPtzP9XtW++2q8khlapMUVJS0OyFWgl0ROZwZDApr2olQK+vNsUC6ZwuUDRPV 
fYaqFCHrjzNBHqgmZV9qBtngYD19fGcpaq1xvHgKJFtPeQOPaG3Gt64FAAAAFQCJfkGZ 
e3alvQDU8L1AVebTUFi8OwAAAIBk9ZqNG1XQizw4ValQXREczlIN946Te/1pKUZpau3W 
iiDAxTFlK8FdE2714pSV3NVkWC4xlQ3x7wa6AUXIhPdLKtiUhTxtctm1epPQS+RZKrRI 
XjwKL71EO7UY+b8EOAC2jBNIRtYRy0Kxsp/NQ0YYzJPfn7bqhZvWC7uiC+D+ZwAAAIEA 
mx0ZYo5jENA0IinXGpc6pYH18ywZ8CCI2QtPeSGP4OxxOusNdPskqBTe5wHjsZSiQr1g 
b7TCmH8Tr50Zx+EJ/XGBU4XoWBJDifP/6Bwryejo3wwjh9d4gchaoZNvIXuHTCYLNPFo 
RKPx3cBXHJZ27khllsjzta53BxLppfk6TtQ= 
---- END SSH2 PUBLIC KEY ---- 
 
Public-private keys are typically generated using a key generation utility. Both keys in 
the pair are generated at the same time and, while the two are related, a private key 
cannot be computed from a corresponding public key. In addition to authentication, keys 
can also be used to sign data. To access an account on a Secure Shell server, a copy of the 
client’s public key must be uploaded to the server. When the client connects to the server 

Secure Shell Overview Page 6 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

it proves that it has the secret, or private counterpart to the public key on that server, and 
access is granted. 
 
The private key never leaves the client machine, and therefore cannot be stolen or 
guessed like a password can. Usually the private key has a “passphrase” associated with 
it, so even if the private key is stolen, the attacker must still guess the passphrase in order 
to gain access. Public key authentication does not trust any information from a client or 
allow any access until the client can prove it has the “secret” private key. 
 

Agent and Agent Forwarding 
Secure Shell Agent is a way to authenticate to multiple Secure Shell servers that 
recognize your public key without having to re-type your passphrase each time. 
Additionally, by turning on agent forwarding, you can connect to a network of Secure 
Shell servers, eliminating the need to compromise the integrity of your private key. 
 

 
Agent Forwarding passes authentication from the first SSH connection 

to the next, re-authenticating each time. 
 

Notice that the private key only has to exist on the original SSHclient machine and the 
passphrase only needs to be typed when SSHClient connects to SSHServerA. Without 
agent forwarding enabled, each Secure Shell machine in the chain (except the last) would 
have to store a copy of the private key. SSHServerA, when authenticating SSHClient to 
SSHServerB becomes, in essence, a client and would require a private key to complete 
the authentication process. Agent support eliminates the need for the passphrase to be 
typed for each connection in the sequence. 

Host Authentication  
A host key is used by a server to prove its identity to a client and by a client to verify a 
“known” host. Host keys are described as persistent (they are changed infrequently) and 
are asymmetric—much like the public/private key pairs discussed above in the Public key 
section. If a machine is running only one SSH server, a single host key serves to identify 
both the machine and the server. If a machine is running multiple SSH servers, it may 
either have multiple host keys or use a single key for multiple servers. Host 
authentication guards against the Man-in-the-Middle attack (see the Threats section for 
more details). Host keys are often confused with session keys, which are used in the data 
encryption process discussed below. 

Secure Shell Overview Page 7 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

Data Encryption  
Encryption, sometimes referred to as privacy, means that your data is protected from 
disclosure to a would-be attacker “sniffing” or eavesdropping on the wire (see the 
Threats section for more details). Ciphers are the mechanism by which Secure Shell 
encrypts and decrypts data being sent over the wire. A block cipher is the most common 
form of symmetric key algorithms (e.g. DES, 3DES, Blowfish, AES, and Twofish). 
These operate on a fixed size block of data, use a single, secret, shared key, and generally 
involve multiple rounds of simple, non-linear functions. The data at this point is 
“encrypted” and cannot be reversed without the shared key. 
 
When a client establishes a connection with a Secure Shell server, they must agree which 
cipher they will use to encrypt and decrypt data. The server generally presents a list of the 
ciphers it supports, and the client then selects the first cipher in its list that matches one in 
the server’s list. 
 
Session keys are the “shared keys” described above and are randomly generated by both 
the client and the server during establishment of a connection. Both the client and host 
use the same session key to encrypt and decrypt data although a different key is used for 
the send and receive channels. Session keys are generated after host authentication is 
successfully performed but before user authentication so that usernames and passwords 
can be sent encrypted. These keys may be replaced at regular intervals (e.g., every one to 
two hours) during the session and are destroyed at its conclusion. 

Data Integrity  
Data integrity guarantees that data sent from one end of a transaction arrives unaltered at 
the other end. Even with Secure Shell encryption, the data being sent over the network 
could still be vulnerable to someone inserting unwanted data into the data stream (See 
Insertion and replay attacks for more details). Secure Shell version 2 (SSH2) uses 
Message Authentication Code (MAC) algorithms to greatly improve upon the original 
Secure Shell’s (SSH1) simple 32-bit CRC data integrity checking method. 

Other Benefits 
Compression, another feature of the Secure Shell protocol, is performed prior to 
encryption and can significantly reduce the computational cost of encrypting data. 
Compression can also noticeably improve the efficiency of a connection and is especially 
beneficial in file transfers, X11 forwarding and running curses-style programs. 
 
Secure Shell provides helpful output or log messages. These messages can be turned on 
or off or configured to give varying levels of detail. Log messages can prove very helpful 
when troubleshooting a problem. For example, if a client were unable to connect to a 
given server, this log output would be the first place to look to determine the source of 
the problem. 

Secure Shell Overview Page 8 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

Secure Shell Software Solutions 
 
VanDyke Software provides secure solutions to vulnerable alternatives like Telnet and 
FTP systems. Our Secure Shell solutions, which combine the VShell™ server with the 
SecureCRT®, and SecureFX® clients, provide the ability to securely and remotely 
administer servers and routers, securely access applications, and securely transfer files. 
Because VanDyke Software products are based on the Secure Shell open standard, they 
provide customers with flexible cross-platform access while guaranteeing authentication, 
strong encryption, and data integrity. 
 

 

VShell® Server 

VShell Secure Shell server is a secure alternative to Telnet and FTP on 
Windows and UNIX platforms. Provide the strong encryption, robust 
authentication, and data integrity of SSH2 throughout your organization. 
Precision control over privileges, the ability to fine tune your Secure Shell 
environment, and a wide selection of strong authentication methods give 
you a flexible solution that grows with your evolving security policies. 

 

SecureCRT®

SecureCRT is an extremely customizable terminal emulator for internet 
and intranet use with support for Secure Shell (SSH1 and SSH2) as well as 
Telnet and RLogin protocols. SecureCRT is ideal for connecting to remote 
systems running Windows, UNIX, and VMS. SecureCRT supports secure 
file transfers via Xmodem, Zmodem, and SFTP.  

 

SecureFX®

SecureFX is a high-security file transfer client with great flexibility in 
configuration and transfer protocols. SecureFX includes a command-line 
utility for scripting batch jobs to perform secure unattended file transfers 
using the Secure Shell protocol (SSH). SecureFX also supports "relentless" 
file transfers that automatically reconnect and resume when transfer 
connections are broken.  

 
 

Secure Shell Overview Page 9 Copyright ©2008 VanDyke Software, Inc. 

http://www.vandyke.com/products/vshell/index.html
http://www.vandyke.com/products/securecrt/index.html
http://www.vandyke.com/products/securefx/index.html


Secure Shell Overview 

Secure Shell – an Open Standard 
Secure Shell is an open standard that is guided by the Internet Engineering Task Force or 
IETF. VanDyke Software is actively involved in the Internet Engineering Task Force 
standards process and has collaborated on the following contributions to the emerging 
Secure Shell protocol standard: 
 

• SECSH Public Key File Format 
• GSSAPI Authentication and Key Exchange for the Secure Shell Protocol 

 
If you are interested in reading the drafts, click here. The original drafts and the most 
recent changes may be found at http://www.ietf.org/html.charters/secsh-charter.html in 
the Internet Drafts section. 
 
Additional Information about IETF can be found at: 
http://www.ietf.org
 

Threats Addressed by Secure Shell 
Below is a discussion of the threats that Secure Shell is well suited to protect your system 
against. 

Eavesdropping or Password Sniffing  
An eavesdropper is a network device, also known as a “sniffer”, which will intercept 
information being transmitted over the wire. This sniffing takes place without the 
knowledge of either the client or server and is called passive monitoring. User data 
including passwords can be stolen this way if you use insecure protocols like telnet and 
FTP. Because the data in a Secure Shell session is encrypted, it is not vulnerable to this 
kind of attack and cannot be decrypted by the eavesdropper. 

Man-in-the-Middle Attack (MITM) 

If the first connection and host key exchange between a client and a particular host is 
compromised, the MITM attack fools both the client and server into thinking that they are 
communicating directly with one another when, in fact, an attacker is actually 
intercepting all traffic between the two as illustrated below: 

The client (Bob) initiates a connection with the server (Alice). Unknown to both Bob and 
Alice, an attacker (Eve) is waiting to intercept their connection negotiation. 

Eve receives Bob’s request for a connection and authenticates herself as Alice. Eve then 
initiates a connection with Alice posing as Bob and authenticates herself. Two secure 
SSH sessions are now in place with Eve reading all of the data being passed between Bob 
and Alice in clear text.  

Secure Shell Overview Page 10 Copyright ©2008 VanDyke Software, Inc. 

http://www.vandyke.com/technology/draft-ietf-secsh-publickeyfile.txt
http://www.vandyke.com/technology/draft-ietf-secsh-publickeyfile.txt
http://www.vandyke.com/technology/drafts.html
http://www.ietf.org/html.charters/secsh-charter.html
http://www.ietf.org/


Secure Shell Overview 

Secure Shell protects against MITM attacks through server host authentication. Unless 
the host itself has been compromised, Eve does not have access to the server’s private 
key and cannot impersonate Alice. 

fake
server

fake
client

Attacker (Eve)

Client (Bob) Server (Alice)

SSH SSH

 

In a Man in the Middle attack, Eve “sits” between Bob and Alice and reads all data in the clear by 
impersonating Alice to Bob and Bob to Alice. Secure Shell keys prevent this attack. 

 

Insertion and Replay Attacks 
Secure Shell’s implementation of Message Authentication Code algorithms prevents the 
threat of a “replay” or “insertion” attack. In this type of attack, the attacker is not only 
monitoring your Secure Shell session but is also observing your keystrokes (either 
physically, as in looking over your shoulder or by monitoring your terminal’s keyboard 
with software). By comparing what you type with the traffic in the SSH stream, an 
attacker can deduce the packet containing a particular command (delete all files, for 
example) and “replay” that command at a particularly inappropriate time during your 
session. 

Secure Shell Overview Page 11 Copyright ©2008 VanDyke Software, Inc. 



Secure Shell Overview 

Need for Policy with Secure Shell 
No single piece of software can be a complete security solution. There are factors beyond 
securing communications through strong authentication and encryption that must be 
considered. The physical environment and the “human factor” are often overlooked as 
significant contributing factors to security breaches. The following list provides a 
suggested starting point for issues and areas of concern that a thorough security policy 
should address: 
 

• Password and/or passphrase policies are needed so that users don’t select short, 
weak or guessable passwords. In addition, you should have a policy that states 
how often a password should be changed, and whether or not passwords can be 
reused. 

• Site security is a critical area that many organizations fail to address adequately. 
Portable computer users should be provided with security devices such as locking 
cables and encouraged not to leave these devices unattended, even for a “minute 
or two”. Physical access to servers, routers, network connections and backup 
media should be secured and limited only to those personnel who require it. 

• Security audits of service providers are an excellent next step after your 
physical plant is secure and policies and procedure for your organization have 
been established and implemented. Internet Service Providers (ISP), Application 
Service Providers (ASP) and data storage vendors generally have robust physical 
and logical security in place. An audit may reveal deficiencies in their policies 
and physical plant but will more likely provide your organization with additional 
ideas to improve your own security plan. 

• Backup procedures are generally adopted for servers but often overlooked or 
ignored for client workstations. Implementing network backup procedures can 
protect and insure retrieval of valuable data if a client machine is lost, stolen or 
damaged. 

 
Using Secure Shell with the above policies in place will enable you to economically, 
privately, effectively and safely use public networks like the Internet to do your day-to-
day business communications with remote users or business partners. 

Secure Shell Overview Page 12 Copyright ©2008 VanDyke Software, Inc. 


	Introduction to Secure Shell
	History of Secure Shell
	Functionality of Secure Shell
	Secure Command Shell
	Port forwarding  
	Secure File Transfer

	Protocol Basics of Secure Shell
	User Authentication 
	Password Authentication
	Public Key Authentication
	Agent and Agent Forwarding

	Host Authentication 
	Data Encryption 
	Data Integrity 
	Other Benefits

	 Secure Shell Software Solutions
	VShell® Server
	SecureCRT®
	SecureFX®

	 Secure Shell – an Open Standard
	Threats Addressed by Secure Shell
	Eavesdropping or Password Sniffing 
	Man-in-the-Middle Attack (MITM)
	Insertion and Replay Attacks

	 Need for Policy with Secure Shell

